

Campus of Industrial Innovation

Campus: Who we are

Dow:

Founded in 1897 - 120 years of growth

- ~ **\$50 billion** in annual revenue in 2016
- ~ 50,000 employees worldwide
- ~ 6,000 R&D Employees across the globe

Successfully finalized merger with DuPont

Campus: Who we are

Amount Dow pledged in 2016

to help fund **43** Habitat for Humanity builds and other projects to serve an estimated **162** families

16th TIME

Named to Dow Jones Sustainability World Index

\$2.8MM

collaborative efforts to reduce ocean debris

Campus: Who we are

The Business

Sales by Business \$18,357MM

- Dow Elastomers
- Dow Electrical and Telecommunications
- Dow Packaging and Specialty Plastics
- Energy
- Hydrocarbons

Performance Plastics Overview

- Built on a foundation of raw material advantage and innovation investments in our polymers business.
- World class plastics assets converting ethylene into a **differentiated product mix**.
- Industry-leading technologies combined with collaborative engagement along the value chain

Key market segments

The Function

- Campus Program dedicated to selected master students
- 9-12 months experience in a global corporation
 - Several weeks of dedicated training programs
 - Personal accountability for challenging **technical project** Projects suitable for master thesis
 - Dedicated local coach in stimulating R&D environment
- Perfect integration in mandatory university internship programs
- Opportunity to create a network with global connections
- Attractive compensation

```
Aim: Prepare talent for the industry!
```


- Development Program (Snapshot)
 Focus on R&D, Interpersonal, Manufacturing and Logistics skills
 - Communication skills
 - Design of experiment methods
 - Social styles at work
 - Intellectual property applied to industry
 - Root cause investigation methodology
 - Simplifying Supply Chain to Facilitate Growth
 - Negotiation skills

.

Functional Skills Research Skills

Technically challenging projects

- Projects covering different applications ranging from durable to flexible, from hygiene and packaging to automotive
- Polymers of focus:
 - polyethylene and ethylene based copolymers with acrylic acid, vinyl acetate, maleic anhydride,...
 - Wide range of density, long and short chain branching distribution, molecular weight and viscosity profiles
- Liquid chemistry systems of interest:
 - reactive polyurethane systems, acrylic based adhesive systems
 - wide range of solvent based, water based and solventless systems
 - wide range of monomers, reactivity and viscosity profiles

- Technically challenging projects
 - Processes of focus:
 - Extrusion (blown film, cast film, fiber spinning, extrusion coating, injection molding..)
 - Adhesive lamination of polyethylene based films on various substrates (e.g. oriented polyesther, oriented polypropylene, non-woven,...)
 - Fibers conversion technology into nonwovens
 - Packaging prototyping (e.g. pillow pouch, stand-up-pouch, ..)
 - Modelling and experimental projects focusing on:
 - structure property relationships
 - rheology
 - fracture mechanics
 - ...

- Project example 1
 - Scope: Sustainable Health & Hygiene application
 Aim: Develop optimal thin airlaid structure for absorbent cores
 - Modelling Part:
 - Model balance of forces during swelling of Super Absorbent Polymer (SAP) in 3D network of cellulose and polyethylene based fibers (= airlaid absorbent core)
 - Define optimal balance of forces to allow for complete SAP swelling Work within defined boundary conditions of stiffness in dry and wet conditions
 - Translate optimal balance of forces into hypothesis about mechanical properties / shape / amount of polyethylene based fibers
 - Translate further into hypothesis about molecular weight and density of polyethylene and fiber extrusion conditions

More information on: http://www.faceofinnovation.com/active-comfort/

- Project example 1
 - Experimental Part:
 - Develop a testing methodology to measure absorbency
 - Based on model hypothesis, extrude different polyethylene based fibers
 - Based on model hypothesis, produce different 3D networks (SAP, cellulose, polyethylene based fibers) via airlaid technology
 - Measure absorbency of baseline structure versus new structures
 Validate model hypothesis

More information on: <u>http://www.faceofinnovation.com/active-comfort/</u>

Campus: What we look for

- Initial focus on selected long-term university partners
 - Chemistry, Chemical / Process / Packaging Engineering master studies

University acquired skills & knowledge

Campus: Location and timing

- Location: Horgen (CH)
 - Dow Regional HQ
 - Stimulating and diverse environment with ~700 employees and ~50 nationalities!
- Campus opening: 2018
 - First round of max 10 positions for motivated master students
- WebPortal for registration currently under development

Campus: Conclusion

Thank you!

